DAC Architectures

Vishal Saxena
Static Performance of DACs
DAC Transfer Characteristics

Note: \(V_{out} (b_i = 1, \text{ for all } i) = V_{FS} - \Delta = V_{FS}(1 - 2^{-N}) \neq V_{FS} \)

- \(N \) = number of bits
- \(V_{FS} \) = full-scale range
- \(\Delta = V_{FS}/2^N = 1\text{ LSB} \)
- \(b_i = 0 \) or 1
Ideal DAC Transfer Curve

- $V_{FS} - \Delta$
- $V_{FS}/2$
- V_{out}
- D_{in}

Points at D_{in}: 000, 001, 010, 011, 100, 101, 110, 111
Offset

\[V_{\text{out}} \]

\[V_{\text{FS}} - \Delta \]

\[\frac{V_{\text{FS}}}{2} \]

\[V_{\text{os}} \]

\[D_{\text{in}} \]
Gain Error

\[V_{\text{out}} \]

\[V_{\text{FS}} - \Delta \]

\[\frac{V_{\text{FS}}}{2} \]

\[D_{\text{in}} \]

Points:
- 000
- 001
- 010
- 011
- 100
- 101
- 110
- 111
Monotonicity

The diagram illustrates the monotonic behavior of a system with inputs D_{in} and outputs V_{out}. The axes represent $V_{FS-\Delta}$, $V_{FS}/2$, and D_{in}, with discrete input values from 000 to 111. The graph shows a clear increasing trend, indicating a monotonic relationship between the input and output signals.
Differential and Integral Nonlinearities

- DNL = deviation of an output step from 1 LSB \((= \Delta = \frac{V_{FS}}{2^N}) \)
- INL = deviation of the output from the ideal transfer curve

\[
DNL_i = \frac{i^{\text{th}} \text{ Step Size} - \Delta}{\Delta}
\]
INL = cumulative sum of DNL

\[\text{INL}_i = \sum_{j=0}^{i} \text{DNL}_j \]
DNL and INL

- DNL measures the uniformity of quantization steps, or incremental (local) nonlinearity; small input signals are sensitive to DNL.
- INL measures the overall, or cumulative (global) nonlinearity; large input signals are often sensitive to both INL (HD) and DNL (QE).
Endpoints of the transfer characteristic are always at 0 and $V_{FS-\Delta}$
Measure DNL and INL (Method II)

Endpoints of the transfer characteristic may not be at 0 and $V_{FS-\Delta}$
Measure DNL and INL

Method I (endpoint stretch)

\[\Sigma(\text{INL}) \neq 0 \]

Method II (LS fit & stretch)

\[\Sigma(\text{INL}) = 0 \]
DAC Architecture

- **Nyquist DAC architectures**
 - Binary-weighted DAC
 - Unit-element (or thermometer-coded) DAC
 - Segmented DAC
 - Resistor-string, current-steering, charge-redistribution DACs

- **Oversampling DAC**
 - Oversampling performed in digital domain (zero stuffing)
 - Digital noise shaping (ΣΔ modulator)
 - 1-bit DAC can be used
 - Analog reconstruction/smoothing filter
Binary-Weighted DAC
Binary-Weighted CR DAC

\[C_u = \text{unit capacitance} \]

- Binary-weighted capacitor array → most efficient architecture
- Bottom plate @ \(V_R \) with \(b_j = 1 \) and @ GND with \(b_j = 0 \)
Binary-Weighted CR DAC

\[
V_o = \left(\frac{2^N C_u}{C_p + 2^N C_u} \right) \cdot V_R \cdot \sum_{j=1}^{N} b_{N-j} \cdot \frac{2^{-j} C_u}{2^j}
\]

- \(C_p \rightarrow \) gain error (nonlinearity if \(C_p \) is nonlinear)
- INL and DNL limited by capacitor array mismatch
Stray-Insensitive CR DAC

\[V_o = \left(\frac{2^N C_u}{2^N C_u + \frac{C_p + 2^{N+1} C_u - C_u}{A}} \right) \cdot V_R \cdot \sum_{j=1}^{N} \frac{b_{N-j}}{2^j} \]

Large \(A \) needed to attenuate summing-node charge sharing
MSB Transition

\[V_o(0111) = \left(\frac{C_1 + C_2 + C_3}{C_p + C + \sum_{j=1}^{4} 2^{4-j} C} \right) \cdot V_R \]

\[V_o(1000) = \left(\frac{C_4}{C_p + C + \sum_{j=1}^{4} 2^{4-j} C} \right) \cdot V_R \]

Assume: \(C_4 - (C_1 + C_2 + C_3) = C_u + \delta C \),

\[\text{DNL} = \left[V_o(1000) - V_o(0111) - 1\text{LSB} \right] / 1\text{LSB} \]

\[= \frac{\delta C}{\sum C} / \frac{C_u}{\sum C} = \delta C / C_u \]

Largest DNL error occurs at the midpoint where MSB transitions, determined by the mismatch between the MSB capacitor and the rest of the array.
\(\delta C > 0 \) results in positive DNL

\(\delta C < 0 \) results in negative DNL or even nonmonotonicity
Output Glitches

- Glitches cause waveform distortion, spurs and elevated noise floors
- High-speed DAC output is often followed by a de-glitching SHA

- Cause: Signal and clock skew in circuits
- Especially severe at MSB transition where all bits are switching – 0111…111 → 1000…000
SHA samples the output of the DAC after it settles and then hold it for T, removing the glitching energy.

SHA output must be smooth (exponential settling can be viewed as pulse shaping \rightarrow SHA BW does not have to be excessively large).
Frequency Response

\[|H(f)| \]

\[f \]

\[0 \]

\[f_s \]

\[2f_s \]

\[3f_s \]

\[f \]

\[H_zoh(j\omega) = e^{-\frac{j\omega T}{2}} \cdot \frac{\sin\left(\frac{\omega T}{2}\right)}{\omega T / 2} \]

\[H_{sha}(j\omega) = \frac{1}{1 + j\omega / \omega_{-3dB}} \]
Binary-Weighted Current-Steering DAC

\[V_o = IR \cdot \sum_{j=1}^{N} \frac{b_{N-j}}{2^j} \]

- Current switching is simple and fast
- \(V_o \) depends on \(R_{out} \) of current sources without op-amp
- INL and DNL depend on matching, not inherently monotonic
- Large component spread \((2^{N-1}:1) \)
R-2R DAC

- A binary-weighted current DAC
- Component spread greatly reduced (2:1)
Unit-Element DAC
Resistor-String DAC

- Simple, inherently monotonic → good DNL performance
- Complexity ↑ speed ↓ for large N, typically N ≤ 8 bits
Code-Dependent R_0

- R_0 of ladder varies with signal (code)
- On-resistance of switches depend on tap voltage

Signal-dependent R_0C_0 causes HD
DNL

\[\Delta R = [0, \sigma_R] \]

\[
V_j = \frac{1}{N} \sum_{k=1}^{j-1} R_k \cdot V_R = \frac{(j-1)R + \sum_{k=1}^{j-1} \Delta R_k}{NR + \sum_{1}^{N} \Delta R_k} \cdot V_R
\]

\[
V_{j-1} = \frac{(j-2)R + \sum_{k=1}^{j-2} \Delta R_k}{NR + \sum_{1}^{N} \Delta R_k} \cdot V_R
\]

\[
V_j - V_{j-1} = \frac{R + \Delta R_{j-1}}{NR + \sum_{1}^{N} \Delta R_k} \cdot V_R \approx \frac{V_R}{N} + \frac{\Delta R_{j-1}}{NR} \cdot V_R
\]

\[
\text{DNL}_j = \left(V_j - V_{j-1} - \frac{V_R}{N} \right) / \frac{V_R}{N} \approx \frac{\Delta R_{j-1}}{R} \Rightarrow \text{DNL} = 0, \sigma_{\text{DNL}} = \frac{\sigma_R}{R}
\]
\[V_j = \frac{\sum_{k=1}^{j-1} R_k}{\sum_{k=1}^{N} R_k} \cdot V_R = \frac{(j-1)R + \sum_{k=1}^{j-1} \Delta R_k}{NR + \sum_{k=1}^{N} \Delta R_k} \cdot V_R \approx \frac{j-1}{N} V_R + \frac{(N-j+1)\sum_{k=1}^{j-1} \Delta R_k - (j-1)\sum_{k=j}^{N} \Delta R_k}{N^2R} V_R \]

\[\Rightarrow \overline{V_j} = \frac{j-1}{N} V_R, \quad \sigma_{V_j}^2 \approx \frac{(j-1)(N-j+1)}{N^3} \frac{\sigma_R^2}{R^2} V_R^2 \]

\[\Rightarrow \sigma_{V_j}^2 (\text{max}) \approx \frac{1}{4N} \frac{\sigma_R^2}{R^2} V_R^2, \quad \text{when} \quad j = \frac{N}{2} + 1 \approx \frac{N}{2} \]

\[\text{INL}_j = \left(V_j - \frac{j-1}{N} V_R \right) / \frac{V_R}{N} \Rightarrow \overline{\text{INL}} = 0, \quad \sigma_{\text{INL}} (\text{max}) \approx \frac{\sqrt{N}}{2} \left(\frac{\sigma_R}{R} \right) \]
INL and DNL of Binary-Wtd DAC

A Binary Weighted DAC is typically constructed using unit elements, the same way as that of a Unit Element DAC, for good component matching accuracy.

\[
\text{INL} = 0, \quad \sigma_{\text{INL}}(\text{max}) \approx \frac{\sqrt{N}}{2} \left(\frac{\sigma_R}{R} \right) \\
\Rightarrow \quad \text{DNL} = 0, \quad \sigma_{\text{DNL}}(\text{max}) = 2 \cdot \text{INL} \approx \sqrt{N} \left(\frac{\sigma_R}{R} \right)
\]
Current-Steering DAC

- Fast, inherently monotonic → good DNL performance
- Complexity increases for large N, requires B2T decoder
Unit Current Cell

- 2^N current cells typically decomposed into a $(2^{N/2} \times 2^{N/2})$ matrix
- Current source cascoded to improve accuracy (R_o effect)
- Coupled inverters improve synchronization of current switches
Segmented DAC
Binary-weighted DAC

- **Pros**
 - Min. # of switched elements
 - Simple and fast
 - Compact and efficient

- **Cons**
 - Large DNL and glitches
 - Monotonicity not guaranteed

- **INL/DNL**
 - $\text{INL}(\text{max}) \approx (\sqrt{N}/2)\sigma$
 - $\text{DNL}(\text{max}) \approx 2\times \text{INL}$

Unit-element DAC

- **Pros**
 - Good DNL, small glitches
 - Linear glitch energy
 - Guaranteed monotonic

- **Cons**
 - Needs B2T decoder
 - complex for $N \geq 8$

- **INL/DNL**
 - $\text{INL}(\text{max}) \approx (\sqrt{N}/2)\sigma$
 - $\text{DNL}(\text{max}) \approx \sigma$

Combine BW and UE architectures → Segmentation
Segmented DAC

- MSB DAC: M-bit UE DAC
- LSB DAC: L-bit BW DAC
- Resolution: $N = M + L$
- 2^{M+L} switching elements
- Good DNL
- Small glitches
- Same INL as BW or UE
Example: $N = 12$, $M = 8$, $L = 4$, $\sigma = 1\%$

<table>
<thead>
<tr>
<th>Architecture</th>
<th>σ_{INL}</th>
<th>σ_{DNL}</th>
<th># of s.e.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit-element</td>
<td>0.32 LSB’s</td>
<td>0.01 LSB’s</td>
<td>$2^N = 4096$</td>
</tr>
<tr>
<td>Binary-weighted</td>
<td>0.32 LSB’s</td>
<td>0.64 LSB’s</td>
<td>$N = 12$</td>
</tr>
<tr>
<td>Segmented</td>
<td>0.32 LSB’s</td>
<td>0.06 LSB’s</td>
<td>$2^M+L = 260$</td>
</tr>
</tbody>
</table>

Max. DNL error occurs at the transitions of MSB segments
Example: “8+2” Segmented Current DAC

Common-centroid global biasing + divided 4 quadrants of current cells
MSB-DAC Biasing Scheme

Chip A: Merged 4 quadrants

Chip B: Separated 4 quadrants

DNL = 0.2 LSB

DNL = 0.1 LSB
Randomization and Dummies

- Column and row randomization to improve INL

- Diagram with symbols for dummy-cells and active-cells:
Current-Steering DAC Unit Cell
Current-Steering DAC Calibration
References

1. **Y. Chiu, Data Converters Lecture Slides, UT Dallas 2012.**
 - K. Khanoyan, F. Behbahani, A. A. Abidi, VLSI, 1999, pp. 73-76.
 - G. A. M. Van Der Plas et al., JSSC, pp. 1708-1718, issue 12, 1999.