Successive Approximation ADCs

Vishal Saxena
Successive Approximation ADC
Data Converter Architectures

Resolution [Bits]

1 level/T_{clk} 1 word/OSR*T_{clk} 1 bit/T_{clk} Partial word/T_{clk} 1 word/T_{clk}

Integrating Oversampling Successive Approximation Algorithmic Subranging Pipeline Folding & Interpolating Interleaving Flash

Nyquist Oversampling

Sample Rate [Hz]

1k 10k 100k 1M 10M 100M 1G 10G 100G
Successive Approximation ADC

- Binary search over DAC inputs
 - $N \times T_{\text{clk}}$ to complete N bits
 - successive approximation register or SAR
- High accuracy achievable (16+ bits)
 - Relies on highly accurate comparator
- Moderate speeds (typically 0.1-10 MHz parts)
Binary Search Algorithm

- DAC output gradually approaches the input voltage
- Comparator differential input gradually approaches zero
Binary Search Algorithm contd.

Start

Sample \(V = V_{in}, \ i = 1 \)

\(V \leq 0 \)

Yes: \(b_i = 1 \)

\(V \rightarrow V - V_{ref}/2^{i+1} \)

No: \(b_i = 0 \)

\(V \rightarrow V + V_{ref}/2^{i+1} \)

\(i \rightarrow i + 1 \)

No: \(i > N \)

Yes: Stop

Signed input

\(V_{DAC} / V_{REF} \)

1/2 3/4 5/8 11/16 21/32 41/64

Time

\(V_{IN} \)
High Performance Example

FEATURES

Throughput:
- 2 MSPS (Warp mode)
- 1.5 MSPS (Normal mode)

18-bit resolution with no missing codes
2.048V internal low drift reference
INL: ±2 LSB typical
S/(N+D): 93 dB typical @ 20 kHz
THD: −115 dB typical @ 20 kHz

Differential input range: ±V_{REF} (V_{REF} up to 2.5 V)
No pipeline delay (SAR architecture)
Parallel (18-, 16-, or 8-bit bus)
Serial 5 V/3.3 V/2.5 V interface
SPI™/QSPI™/MICROWIRE™/DSP compatible
Single 2.5 V supply operation
Power dissipation: 65 mW typical @ 2 MSPS
Charge Redistribution SAR ADC

- 4-bit binary-weighted capacitor array DAC *(aka charge scaling DAC)*
- Capacitor array samples input when Φ_1 is asserted (bottom-plate)
- Comparator acts as a zero crossing detector
- Practical implementation is fully-differential
- Charge Redistribution (MSB)

- Start with C_4 connected to V_R and others to 0 (i.e. SAR=1000)

\[
V_i \cdot 16C = (V_R - V_X)C_4 - V_X(C_3 + C_2 + C_1 + C_0) \Rightarrow V_X = \frac{V_R \cdot 8C - V_i \cdot 16C}{16C} = \frac{V_R}{2} - V_i
\]
Comparison (MSB)

- If $V_X < 0$, then $V_i > V_R/2$, and MSB = 1, C_4 remains connected to V_R
- If $V_X > 0$, then $V_i < V_R/2$, and MSB = 0, C_4 is switched to ground

$$MSB \text{ TEST } : V_X = \frac{V_R}{2} - V_i$$
Charge Redistribution (MSB–1)

- SAR=1100

\[V_i \cdot 16C = (V_R - V_X) \cdot 12C - V_X \cdot 4C \Rightarrow V_X = \frac{V_R \cdot 12C - V_i \cdot 16C}{16C} = \frac{3}{4} V_R - V_i \]
Comparison (MSB–1)

- If \(V_X < 0 \), then \(V_i > \frac{3V_R}{4} \), and MSB-1 = 1, \(C_3 \) remains connected to \(V_R \)
- If \(V_X > 0 \), then \(V_i < \frac{3V_R}{4} \), and MSB-1 = 0, \(C_3 \) is switched to ground

\[(MSB-1) \text{ TEST: } V_X = \frac{3}{4} V_R - V_i\]
Charge Redistribution (Other Bits)

Test completes when all four bits are determined with four charge redistributions and comparisons.

- SAR=1010, and so on…
After Four Clock Cycles…

- Usually, half T_{clk} is allocated for charge redistribution and half for comparison + digital logic.
- V_X always converges to 0 (V_{os} if comparator has nonzero offset).
Summing-Node Parasitics

- If $V_{os} = 0$, C_P has no effect eventually; otherwise, C_P attenuates V_X
- Auto-zeroing can be applied to the comparator to reduce offset
SAR ADC Considerations

• Power efficiency – only comparator consumes DC power
• Conversion rate typically limited by finite bandwidth of RC network during sampling and bit-tests
• For high resolution, the binary weighted capacitor array can become quite large
 • E.g. 16-bit resolution, $C_{total} \sim 100\,\text{pF}$ for reasonable kT/C noise contribution
• If matching is an issue, an even larger value may be needed
 • E.g. if matching dictates $C_{min} = 10\,\text{fF}$, then $2^{16}C_{min} = 655\,\text{pF}$
Comparator offset V_{os} introduces an input-referred offset $\sim (1+C_P/\Sigma C_j)V_{os}$

- C_P in general has little effect on the conversion ($V_X \to 0$ at the end of the search)
 - however, V_X is always attenuated due to charge sharing of C_P
- Binary search is sensitive to intermediate errors made during search – if an intermediate decision is wrong, the digitization process cannot recover
 - DAC must settle into $\pm \frac{1}{2}$ LSB bound within the time allowed
 - Comparator offset must be constant (no hysteresis or time-dependent offset)
- Non-binary search algorithm can be used (Kuttner, ISSCC’02)
• Commonly used techniques
 • Implement "two-stage" or "multi-stage" capacitor network to reduce array size [Yee, JSSC 8/79]
 • Split DAC or C-2C network
 • Calibrate capacitor array to obtain precision beyond raw technology matching [Lee, JSSC 12/84]
SAR ADC Speed Estimation

- Model RC network when VIN is charged
 - Replace switches with R’s
 - Assume switches are sized proportional to capacitors
SAR ADC Speed Estimation contd.

- Speed limited by RC time constant of capacitor array and switches

\[\tau_{eq} = (R_{s1} + R_{s2} + R/2^N)2^N C \]

- For better than 0.5 LSB accuracy

\[e^{-T/\tau_{eq}} < \frac{1}{2^{N+1}} \]

- Sets minimum value for the charging time \(T \)

\[T > 0.69(N + 1)(R_{s1} + R_{s2} + R/2^N)2^N C \]
Fully-differential Implementation
Recap: Advantages of SAR ADC

- Mostly digital components
 - good for technology scaling
- No linear, high precision amplification is required
 - fast, low power
- Minimal hardware
 - 1 comparator is needed
Digital friendly architecture in scaled CMOS has renewed interest in SAR innovation.
Limitations of Synchronous SAR

• Cost
 • High-speed internal clock needed ✗

• Speed Limitation
 • Worst-case cycle time ✗
 • Margin for clock jitter ✗
Asynchronous SAR Concept

- Self-timed Asynchronous comparisons
- Master clock used for synchronizing with the sample rate

\[t_{\text{cmp}} \propto \frac{C}{g_m} \ln\left(\frac{V_{FS}}{V_{ID}}\right) \]

\[t_{\text{cmp}} \]

\[V_{ID} \]

M. S. W. Chen, R. Brodersen, “A 6b 600MS/s 5.3mW Asynchronous ADC in 0.13μm CMOS,” ISSCC 06.
How much comparison time is saved?

• Conv. time between sync. and async. SAR, assuming regenerative comparator is used.

 • It varies with residue voltage profile

\[
T_{\text{cmp}} = \frac{\tau}{A_o - 1} \cdot \ln \frac{V_{FS}}{V_{res}} = K \cdot \ln \frac{V_{FS}}{V_{res}}
\]

\[
T_{\text{async}} = \sum_{i=0}^{N-1} K \cdot \ln \frac{V_{FS}}{V_{res[i]}}
\]

\[
T_{\text{sync}} = N \cdot K \cdot \ln \frac{V_{FS}}{V_{min}}
\]
Asynchronous SAR ADC Concept

- M. S.W. Chen, R. Brodersen, “A 6b 600MS/s 5.3mW Asynchronous ADC in 0.13μm CMOS,” ISSCC 06.
Asynchronous SAR ADC Concept

- Dynamic to save power and generate ready signal
- Reset switches for fast recovery
- Ready signal is generated by NAND gate!
Monotonic Capacitor Switching

- Monotonic switching procedure
 - Input-common mode voltage gradually converges to ground
 - Exploit differential configuration
- Asynchronous comparisons
- Switching energy reduced by 81%
Monotonic Capacitor Switching contd.

A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure

Chun-Cheng Liu, Student Member, IEEE, Soon-Jyh Chang, Member, IEEE, Guan-Ying Huang, Student Member, IEEE, and Ying-Zu Lin, Student Member, IEEE
Monotonic Capacitor Switching contd.

- Conventional switching procedure
Monotonic Capacitor Switching contd.

• Monotonic switching procedure
Monotonic Capacitor Switching contd.

Dynamic comparator with a current source.

(a) Bootstrapped switch. (b) Cross-coupled capacitors.

Asynchronous control logic: (a) Schematic. (b) Timing diagram.
Loop-unrolled SAR ADC

- Use N comparators for each bit of conversion
- “loop unrolling”
- Asynchronous individual comparisons
- 1.25Gbps 6-bit
 - Serial links application

Fig. 2. Proposed loop-unrolled SAR architecture.

Single-Channel, 1.25-GS/s, 6-bit, Loop-Unrolled Asynchronous SAR-ADC in 40nm-CMOS

Tao Jiang¹, Wing Liu², Freeman Y. Zhong², Charlie Zhong², Patrick Y. Chiang¹

Vishal Saxena
Loop-unrolled SAR ADC contd.

- High speed comparator
- IDAC for offset cancellation
- Metastability detection

Fig. 4. Comparator design with current steering offset cancellation circuit

Fig. 6. Metastability detection circuit and its working process.
Time Interleaving

- Sampling rate scale proportionally to the number of interleaved channels
- Calibration is required for inter-channel mismatch
- Relaxed clock distribution
- For example:
 - 8bit 56GS/s
 - 320 of 175MS/s SAR (Fujitsu)
90GS/s 8bit with 64x Time Interleave

- Two comparators ‘ping-pong’ in two consecutive conversions implemented in 32nm SOI

References

2. Y. Chiu, Data Converters Lecture Slides, UT Dallas 2012.